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Abstract
The cohesive properties of cubic ionic crystals are, in principle, affected by the
response of anions to symmetry-preserving changes of their environment away
from the equilibrium nuclear geometry. The importance of such a response is
investigated by performing non-empirical computations with the Relativistic
Integrals program. For each crystal, the properties computed using anion
wavefunctions optimal for each nuclear geometry are compared with those
predicted using ‘frozen’ potentials in which the same anion wavefunction,
one optimal for a near-equilibrium nuclear geometry, is used to compute all
the inter-ionic interactions. Use of such ‘frozen’ potentials leaves essentially
unchanged the excellent predictions of the fully optimal computations for both
the lattice energy and the closest equilibrium cation–anion separation. The bulk
compressibility is significantly overestimated by using ‘frozen’ potentials,often
by 50% or even 80%, thus destroying the agreement between experiment and
the predictions of the fully optimal computations.

1. Introduction

There is abundant experimental and theoretical evidence, reviewed elsewhere [1, 2], that many
crystals are essentially fully ionic. Consequently theoretical studies of polar solids using
non-empirical ionic models are well founded, being motivated by the many reasons discussed
previously [1, 3]. Theoretical investigations using a fully ionic model of both the cohesive and
other properties of a wide range of crystals, both those of both cubic structure [3–9] and those
of significantly lower symmetry [10–12], have yielded excellent agreement with experimental
data. However, it has been shown that such good agreement between theory and experiment
is only obtained if the responses of at least the anions [3, 9] and in certain cases also the
cations [3, 13, 14] to their in-crystal environments are correctly described. Three different
types of response of an ion to its in-crystal environment can be distinguished.

The first way in which an ion can respond to its crystalline environment is by acquiring an
electric multipole moment, usually a dipole moment. The importance of this phenomenon
for the dielectric and elastic properties of crystals has long been recognized [15, 16], it
being often described using the venerable shell model [17]. Furthermore, the significant
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quadrupole moments induced on silver cations by non-zero electric field gradients are important
in determining the properties of silver salts [13, 14]. More recently, it has been shown [2, 14, 18]
that the stabilization experienced by an ion on acquiring a dipole moment through residing
on a site of low symmetry at which there is a permanent non-vanishing electric field is often
the crucial factor in causing a crystal to adopt its observed structure. Indeed this work [18]
overturned the previously widely held belief that the low symmetries of many crystal structures
were evidence of partial covalency.

The second way in which an ion responds to its in-crystal environment is through the
radial electron density of the ion in the crystal at its equilibrium geometry differing from that
of the isolated ion which, however, does not acquire any permanent electric multipole moment.
The significance of such changes for the crystal cohesive properties have been conclusively
demonstrated by the non-empirical computations [1, 3–9, 19] using the Relativistic Integrals
program (RIP) [19, 20] for binary cubic materials. The theoretical basis of these computations
rests on the definition [1, 3, 21] of a fully ionic crystal composed of main group elements as one
where the electronic wavefunction for the entire solid can be written as an anti-symmetrized
product of individual ion wavefunctions each of which, although in general different from
that of the corresponding free ion, is spherically symmetric and contains the integral number
of electrons consistent with its formal charge. The wavefunctions of different ions are not
orthogonal; their overlaps generate the short-range repulsions which oppose the attractive
Madelung terms, thereby maintaining crystals at their equilibrium geometries. Even after
introducing reliable descriptions of the inter-ionic dispersive attractions, computations [3, 9, 19]
using the RIP predicted insufficient crystal cohesion if the short-range inter-ionic interactions
were computed from the wavefunctions of the free ions. These deficits in cohesion were
manifested by the prediction of lattice energies and bulk compressibilities that were too small
compared with experiment with equilibrium lattice spacings that were too large. However,
it was shown [3–9] that use of ion wavefunctions which were optimal for their in-crystal
environment, although still spherically symmetric, repaired the failures of the free ion model.
At each crystal geometry, the energy, called the rearrangement energy, required to convert a
free ion into its form optimal for that geometry is more than offset by the reduction of the short-
range cation–anion repulsions, thereby predicting a more negative value for the total crystal
energy. The non-vanishing of anion rearrangement energies and the contraction of their electron
densities reducing cation–anion short-range repulsions are not the only manifestations of the
compression experienced by an anion on introduction into a crystal at its equilibrium geometry.
Further manifestations of these compressions are the significant in-crystal reductions of both
the polarizabilities of anions [22–25] and the dipole–dipole [26] and dipole–quadrupole [7, 27]
dispersion coefficients involving these species. Another manifestation of the second type of
response of an ion to its in-crystal environment are the modifications of the polarizabilities of
cations having d10 outermost electronic configurations [25].

The third type of response of an ion to its in-crystal environment consists of those changes
in the electronic structure and properties of an ion which are generated when a cubic crystal
undergoes a small but uniform expansion or contraction from its equilibrium geometry. The
second type of response, discussed in the last paragraph, could be regarded as the special case
of this third kind in which the crystal is expanded to an infinite size so that each of its constituent
ions becomes essentially isolated. Thus the third type of response is similar to the second in that
the ion does not acquire any permanent electric multipole moment. The theoretical studies [3–
9] of the cohesive properties of cubic crystals using the RIP have accounted for the third
type of environmental response by using, at each geometry considered, the ion wavefunctions
optimal for that geometry. However, unlike the case for the first two types of environmental
response whose importance is now well documented, there has been no previous elucidation of
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the significance for the crystal cohesion of this third type of environmental influence, namely
effects generated by differences between the ion wavefunctions optimal for any geometry and
those optimal for the equilibrium geometry. The purpose of this present paper is to fill this
gap in our knowledge by showing explicitly how the cohesive properties of cubic crystals are
influenced by this third type of environmental modification of ionic properties.

2. Results

The importance of the third type of response of an ion to its environment in crystal is elucidated
by comparing the crystal cohesive properties computed taking account of such a response with
the predictions resulting when this is ignored. These two types of prediction were generated
by using the fully ionic description, computing the inter-ionic potentials with the RIP with
subsequent introduction of electron correlation effects. The short-range correlations were
derived from density functional theory [1] whilst the calculation of the inter-ionic dispersive
attractions included their damping [1, 3, 28] which arises when the overlap between an
interacting pair of ions is not negligible. The cation wavefunctions, computed using the Oxford
Dirac–Fock program [29], were taken to be the same as those of the free ions because there is
abundant evidence, reviewed elsewhere [1, 25], that cations having a p6 outermost electronic
configuration are essentially unaffected by their in-crystal environments. The wavefunctions
of the anions were computed using one of the two currently most sophisticated descriptions of
their in-crystal environments,namely the ODMFS or OEMFS models [5, 8, 9]. Thus the crystal
cohesive energies were computed as a function of the closest cation–anion separation R, the
only variable needed to define the geometry of a cubic crystal of given structure, by using the
already documented methods [1, 3–5, 8, 9] based on the energy expression (1) presented in the
next section. The predictions derived by using, at each R, the anion wavefunctions optimized
for that crystal geometry have been designated ‘optimal’ [30, 31]. For each crystal, predictions
derived by using at all inter-ionic separations the same anion wavefunction,namely that optimal
for an R-value close to Re, denoted R′

e, are designated ‘frozen’ [30, 31]. Comparison of the
predictions derived from the ‘optimal’ wavefunctions with those predicted using the ‘frozen’
ones will therefore reveal the importance of the third type of response of the anions to variations
in their in-crystal environment.

The lattice energies (De), equilibrium inter-nuclear separations (Re) and compressibilities
(B) predicted using the ‘optimal’ wavefunctions and presented in table 1 in the columns headed
‘Optimal’ are just those previously reported [5, 7–9]. The results for both ThO2 and CsCl
were derived used the later more accurate values [7, 9] for the dipole–quadrupole dispersion
coefficients as well as, for CsCl, the other small refinements reported elsewhere [9]. These
results thus differ from those presented in [4, 6]. The predictions for all three quantities De,
Re and B derived from the ‘optimal’ wavefunctions agree well with the experimental results.
The slight discrepancy between theory and experiment for the CsCl lattice energy arises, as
discussed elsewhere [9], from the omission of the Axilrod–Teller three-body dispersion energy.
These optimal results should be compared with those presented in the table in the columns
headed ‘Frozen’ which were derived for each crystal by using its ‘frozen’ anion wavefunction,
so that in each such calculation the same anion wavefunction was used to compute at all R
both the short-range cation–anion interaction and the short-range anion–anion term. Since,
for each crystal, the R′

e-value used to compute the ‘frozen’ wavefunction is so close to the
experimental Re, it is not surprising that the predictions for both De and Re derived using this
wavefunction are so similar to the ‘optimal’ results. However, each bulk compressibility B
is significantly overestimated by the computation using the ‘frozen’ wavefunction. Although
the overestimation is only about 20% for CaF2 since the fluoride ion is only moderately
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Table 1. Influence of environmental model on crystal binding. Lattice energies (De) in
kJ mol−1, closest equilibrium cation–anion separations (Re) in au and bulk compressibilities (B)

in 1010 N m−2. For sources of experimental data, see the papers cited for the optimal results. Note
that for ThO2 the ‘experimental’ De derived in [6] from a thermodynamic cycle involved values for
the third and fourth ionization potentials of thorium calculated by augmenting the predictions of
ab initio relativistic Hartree–Fock computations with semi-empirical estimates of the contributions
arising from electron correlation. Results labelled ‘Frozen’ were derived using, at all R, the
wavefunction optimal for the distance R′

e close to the experimental Re . Results labelled ‘AA froz’
used optimal rearrangement energies and cation–anion interactions but the frozen anion–anion
interaction. Results labelled ‘Optimal’ used at each R the wavefunction optimal for that R. The
R′

e-values were 3.981, 4.544, 4.5, 6.75 and 4.5 au for MgO, CaO, ThO2, CsCl and CaF2 respectively.

MgO CaO

Frozen AA froz Optimal [5] Experiment Frozen AA froz Optimal [5] Experiment

De 3038 3040 3038 3038 2645 2646 2645 2644
Re 4.001 3.918 3.994 3.974 4.568 4.567 4.536 4.537
B 27.0 20.8 19.9 17.5 18.7 12.6 11.7 11.3

ThO2 CsCl

Frozen AA froz Optimal [7] Experiment Frozen AA Froz Optimal [9] Experiment

De 8119 8140 8140 8100 664 664 664 659, 656
Re 4.582 4.590 4.587 4.582 6.728 6.757 6.755 6.748
B 33.0 19.3 18.4 19.3 4.92 2.69 2.69

CaF2

Frozen AA froz Optimal [8] Experiment

De 2631 2632 2631 2630
Re 4.471 4.449 4.457 4.448
B 10.53 9.63 8.90 8.825

affected by its in-crystal environment, the fractional discrepancies increase on passing to more
environmentally sensitive chloride and oxide ions. Thus the ‘frozen’ calculations overestimate
the B-values of the three oxides and CsCl by factors of between 50% and 80%. This shows that,
in general, an anion responds very significantly to small variations in its in-crystal environment
away from the equilibrium crystal geometry and hence such a response must be considered if
crystal properties other than De and Re are to be accurately predicted.

For each crystal, the predictions assembled in the table in the columns headed ‘AA
froz’ were derived by using the wavefunction optimal at each R to compute both the anion
rearrangement energy and the short-range cation–anion repulsion but used the ‘frozen’ anion–
anion interaction. Such computations are of interest not only because they reveal the relative
significance of freezing the anion–anion interaction compared with freezing all the interactions
but also because they were found to provide [10–12, 14, 30] the most appropriate basis for the
first compressible ion model calculations. The ‘frozen’ anion–anion short-range interactions
have been reported in detail elsewhere, in [31] for the oxides and CaF2 and in [9] for CsCl and
also NaCl. Comparison of the predictions in the table columns headed ‘AA froz’ with both those
derived using the fully optimal (‘Optimal’ columns) and entirely frozen (‘Frozen’ columns)
wavefunctions shows that the overwhelming degradation of the predictions and overestimation
of the compressibility in the fully ‘frozen’ computations is caused by the failure to use optimal
values for the rearrangement energy and short-range cation–anion repulsions. By contrast, the
inaccuracies introduced by replacing just the ‘optimal’ anion–anion interaction by its ‘frozen’
counterpart are quite minor. The success of previous compressible ion model descriptions of
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MgO, CaO [11, 30] and CaF2 [10] relied on this result which had to be elucidated during the
course of those researches. Any small differences between the results in the table columns
headed ‘AA froz’ and those previously reported arise simply because the compressible ion
model fits to the ab initio RIP results, although very good, were not, of course, quite perfect.

3. Discussion

The inadequacies of computations using frozen wavefunctions do not imply that the approach
widely called the rigid ion model in the literature is necessarily similarly deficient. The
terminology ‘rigid ion model’ is normally applied to descriptions in which the ions are taken
to be non-polarizable so that they cannot respond to their in-crystal environments in the first
of the three ways listed here, that is by developing any permanent electric multipole moments.
The short-range interactions in rigid ion models are usually determined semi-empirically by
fitting an assumed analytic form for this repulsion so that appropriate experimental data are
reproduced. The effects arising from the response of anion wavefunctions, charge distributions
and hence short-range cation–anion repulsions to the changes in the in-crystal environment may
well be implicitly included in rigid ion model fits even though these procedures do not explicitly
recognize the existence of ion rearrangement energies or the third type of environmental
response of an ion to variations in its in-crystal environment. Thus the negative molar binding
energy UL(R) of a cubic crystal of formula CAm composed of cations (C) and anions (A) and
having geometry defined by the closest cation–anion separation R is the difference between
the total crystal energy and the sum of the energies of one mole of free cations and m moles of
free anions. For oxides, the m moles of free anions actually consists of m moles of free singly
charged O− ions and m moles of free electrons. The molar binding energy is given by [1, 3]

UL(R) = N f {−M/R + m Ere(R) + nCAVsCA(R)

+ (1/2)[mnAAVsAA(xAA R) + nCCVsCC(xCC R)]} + Udisp(R). (1)

All the energies in the curly brackets { } are expressed in atomic units per ion or per ion pair
whilst N f is a constant converting a binding energy per ion into one per mole. Here M is the
Madelung constant, nXY is the number of closest neighbouring ions of type Y (X = C or A)

surrounding one ion of type X and xXY is a geometric constant, determined by the crystal
structure, which yields the separation between an ion of type Y and a closest neighbour of type
X as xXY R. The quantity Ere(R) is the rearrangement energy needed to convert one free anion
into its compressed form optimal for the crystal with geometry defined by R. Each short-range
interaction VsXY(xXY R) is, disregarding the point Coulomb term qXqY/(xXY R) where qX is
the net charge of ion X, the energy of a pair of ions, one of type X and one of type Y, separated
by a distance xXY R measured relative to the sum of the energies that the ions X and Y would
have at infinite inter-nuclear separation if they were then to retain their wavefunctions optimal
for the crystal with geometry defined by R. Both Ere(R) and each VsXY(xXY R) are sums
of a major part computed using the RIP plus a correlation correction evaluated using density
functional theory as described elsewhere [1, 3, 5]. The summation over all pairs of ions of
the dispersive attractions within each pair yields for the one mole of crystal the total two-body
dispersion energy Udisp(R) calculated as described elsewhere [1, 3, 7–9]. The expression (1)
for the cohesive energy can be cast into a form in which the rearrangement energy is absorbed
into an effective cation–anion pair potential V ef f

sCA(R):

UL(R) = N f {−M/R + nCAV ef f
sCA(R) + (1/2)[mnAAVsAA(xAA R)

+ nCCVsCC(xCC R)]} + Udisp(R) (2)
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with

V ef f
sCA(R) = VsCA(R) + (m/nCA)Ere(R). (3)

Since the cohesive energy in rigid ion models is fitted to expressions of the type (2), the
resulting quantities conventionally considered to be short-range cation–anion interactions are
actually effective cation–anion interactions of the type (3). Thus, if only one crystal structure
is considered, the rigid ion model fit does implicitly account for the third type of influence of
the in-crystal environment on ion wavefunctions. However, the explicit presence of the cation
coordination number nCA in the form (3) shows that the effective potential will not be fully
transferable to a different polymorph of the same compound even if the anion wavefunctions
in the two polymorphs were sufficiently similar that the individual terms VsCA(R) and Ere(R)

were to remain essentially unchanged. It has been shown [4, 9] that it is the coordination
dependence of the V ef f

sCA(R) which causes theories assuming structure-independent effective
cation–anion interactions to be unable to predict that the eightfold-coordinated structure of
CsCl has an energy slightly lower than the rock-salt-structured polymorph.

The structural dependences of the anion sizes and hence of short-range cation–anion
interactions are modelled in a simplistic way by the well established breathing shell model [32].
However, this model was motivated not by the considerations underlying the computations
using the RIP but by the need to take account of those many-body effects which explicitly
manifest themselves in the non-equality between the two elastic constants C12 and C44. Thus
this theory is concerned with those many-body contributions to the energy of a cubic crystal
which arise when its geometry is distorted such that the cubic symmetry is destroyed. Such
environments are implicitly referred to in theoretical treatments of these two elastic constants.
The present work was not concerned with such distorted geometries but with those preserving
cubic symmetry. The most direct demonstration of the importance of the response of an ion
to cubic symmetry-preserving changes in its environment is provided by the results presented
in the table in the present paper.

4. Conclusions

Non-empirical computations based on the fully ionic model of the cohesive properties of cubic
crystals have shown the importance of taking into account the changes in the properties of
anions when such a crystal undergoes uniform expansions or contractions from its equilibrium
nuclear geometry. Failure to account for these changes in anion properties yields predictions
for the bulk compressibility of a crystal which are often more than 50–80% too large.
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